1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
package subex
import (
"main/walk"
)
// A state of execution for the transducer
type SubexState interface {
// Eat a Atom and transition to any number of new states
eat(store Store, char walk.Atom) []SubexBranch
// Find accepting states reachable through epsilon transitions and return their outputs
accepting(store Store) [][]walk.Atom
}
type SubexParentState interface {
SubexState
// Get the child
child() SubexState
// The child outputted output, what should be passed as accumulator data into the next version of the parent state
nextAcc(output []walk.Atom) interface{}
// Given the final accumulated data, run the next state after the parent, immutably borrows store
feedNext(acc interface{}, store Store, char walk.Atom) []SubexBranch
// Given the final accumulated data, get the accepted outputs from the next state, immutably borrows store
acceptNext(acc interface{}, store Store) [][]walk.Atom
// Given the next child and next accumulator data, generate the next parent
nextParent(child SubexState, acc interface{}) SubexState
}
// Try first, if it fails then try second
type SubexGroupState struct {
first, second SubexState
}
func (state SubexGroupState) eat(store Store, char walk.Atom) []SubexBranch {
otherStore := store.clone()
return append(state.first.eat(store, char), state.second.eat(otherStore, char)...)
}
func (state SubexGroupState) accepting(store Store) [][]walk.Atom {
return append(state.first.accepting(store), state.second.accepting(store)...)
}
// Helper so states that are actually collections of states distinguished by a child state
// can pass eaten characters on to their children more easily
func feedChild(parent SubexParentState, store Store, char walk.Atom) (nextStates []SubexBranch) {
child := parent.child()
accepteds := child.accepting(store)
for _, accepted := range accepteds {
acc := parent.nextAcc(accepted)
nextStates = append(nextStates, parent.feedNext(acc, store, char)...)
}
nextChildren := child.eat(store, char)
for _, nextChild := range nextChildren {
acc := parent.nextAcc(nextChild.output)
nextStates = append(nextStates, SubexBranch{
state: parent.nextParent(nextChild.state, acc),
output: nil,
store: nextChild.store,
})
}
return nextStates
}
func acceptChild(parent SubexParentState, store Store) (outputs [][]walk.Atom) {
child := parent.child()
accepteds := child.accepting(store)
for _, accepted := range accepteds {
acc := parent.nextAcc(accepted)
outputs = append(outputs, parent.acceptNext(acc, store)...)
}
return outputs
}
// Run the match machine and store the output in a slot for later use
// Output nothing
type SubexStoreState struct {
match SubexState
slot rune
next SubexState
toStore []walk.Atom
}
func (state SubexStoreState) child() SubexState {
return state.match
}
func (state SubexStoreState) nextAcc(output []walk.Atom) interface{} {
return walk.ConcatData(state.toStore, output)
}
func (state SubexStoreState) feedNext(acc interface{}, store Store, char walk.Atom) []SubexBranch {
toStore := acc.([]walk.Atom)
nextStore := store.withValue(state.slot, toStore)
return state.next.eat(nextStore, char)
}
func (state SubexStoreState) acceptNext(acc interface{}, store Store) [][]walk.Atom {
toStore := acc.([]walk.Atom)
nextStore := store.withValue(state.slot, toStore)
return state.next.accepting(nextStore)
}
func (state SubexStoreState) nextParent(match SubexState, acc interface{}) SubexState {
toStore := acc.([]walk.Atom)
return &SubexStoreState {
match: match,
slot: state.slot,
next: state.next,
toStore: toStore,
}
}
func (state SubexStoreState) eat(store Store, char walk.Atom) (nextStates []SubexBranch) {
return feedChild(state, store, char)
}
func (state SubexStoreState) accepting(store Store) (outputs [][]walk.Atom) {
return acceptChild(state, store)
}
// A part of an output literal, either an Atom or a slot from which to load
type OutputContent interface {
// Given the current store, return the []Atom produced by the TransducerOutput
build(Store) []walk.Atom
}
// An OutputContent which is just an Atom literal
type OutputAtomLiteral struct {
atom walk.Atom
}
func (replacement OutputAtomLiteral) build(store Store) []walk.Atom {
return []walk.Atom{replacement.atom}
}
// An OutputContent which is a slot that is loaded from
type OutputLoad struct {
slot rune
}
func (replacement OutputLoad) build(store Store) []walk.Atom {
return store[replacement.slot]
}
// Don't read in anything, just output the series of data and slots specified
type SubexOutputState struct {
content []OutputContent
next SubexState
}
// Given a store, return what is outputted by an epsilon transition from this state
func (state SubexOutputState) build(store Store) []walk.Atom {
var result []walk.Atom
for _, part := range state.content {
result = append(result, part.build(store)...)
}
return result
}
func (state SubexOutputState) eat(store Store, char walk.Atom) []SubexBranch {
content := state.build(store)
nextStates := state.next.eat(store, char)
for i := range nextStates {
nextStates[i].output = walk.ConcatData(content, nextStates[i].output)
}
return nextStates
}
func (state SubexOutputState) accepting(store Store) [][]walk.Atom {
content := state.build(store)
outputs := state.next.accepting(store)
for i := range outputs {
outputs[i] = walk.ConcatData(content, outputs[i])
}
return outputs
}
// A final state, transitions to nothing but is accepting
type SubexNoneState struct {}
func (state SubexNoneState) eat(store Store, char walk.Atom) []SubexBranch {
return nil
}
func (state SubexNoneState) accepting(store Store) [][]walk.Atom {
return [][]walk.Atom{nil}
}
// A dead end state, handy for making internals work nicer but technically redundant
type SubexDeadState struct {}
func (state SubexDeadState) eat(store Store, char walk.Atom) []SubexBranch {
return nil
}
func (state SubexDeadState) accepting (store Store) [][]walk.Atom {
return nil
}
// Read in a specific Atom and output it
type SubexCopyAtomState struct {
atom walk.Atom
next SubexState
}
func (state SubexCopyAtomState) eat(store Store, char walk.Atom) []SubexBranch {
// TODO can I compare Atom values with == ?
if char == state.atom {
return []SubexBranch{{
state: state.next,
output: []walk.Atom{char},
store: store,
}}
}
return nil
}
func (state SubexCopyAtomState) accepting(store Store) [][]walk.Atom {
return nil
}
// Read in any Atom and output it
type SubexCopyAnyState struct {
next SubexState
}
func (state SubexCopyAnyState) eat(store Store, char walk.Atom) []SubexBranch {
return []SubexBranch{{
state: state.next,
output: []walk.Atom{char},
store: store,
}}
}
func (state SubexCopyAnyState) accepting(store Store) [][]walk.Atom {
return nil
}
// Read in an Atom and apply a map to generate an Atom to output
// If the input isn't in the map transition to nothing
type SubexRangeState struct {
parts map[walk.Atom]walk.Atom
next SubexState
}
func (state SubexRangeState) eat(store Store, char walk.Atom) []SubexBranch {
out, exists := state.parts[char]
if !exists {
return nil
} else {
return []SubexBranch{{
state: state.next,
output: []walk.Atom{out},
store: store,
}}
}
}
func (state SubexRangeState) accepting(store Store) [][]walk.Atom {
return nil
}
func sumValues(values []walk.Atom) walk.ValueNumber {
var sum float64 = 0
for _, value := range values {
switch v := value.(type) {
case walk.ValueBool:
if (bool(v)) {
sum += 1
}
case walk.ValueNumber:
sum += float64(v)
case rune:
if '0' <= v && v <= '9' {
sum += float64(v - '0')
}
default:
}
}
return walk.ValueNumber(sum)
}
// Run the inputState machine and sum any values output, output the sum
// Cast non numbers into numbers, ignore anything uncastable
type SubexSumState struct {
inputState SubexState
next SubexState
sum walk.ValueNumber
}
func (state SubexSumState) child() SubexState {
return state.inputState
}
func (state SubexSumState) nextAcc(output []walk.Atom) interface{} {
return sumValues(append(output, state.sum))
}
func (state SubexSumState) feedNext(acc interface{}, store Store, char walk.Atom) []SubexBranch {
total := acc.(walk.ValueNumber)
output := []walk.Atom{total}
nextStates := state.next.eat(store.clone(), char)
for i := range nextStates {
nextStates[i].output = walk.ConcatData(output, nextStates[i].output)
}
return nextStates
}
func (state SubexSumState) acceptNext(acc interface{}, store Store) [][]walk.Atom {
total := acc.(walk.ValueNumber)
output := []walk.Atom{total}
outputs := state.next.accepting(store.clone())
for i := range outputs {
outputs[i] = walk.ConcatData(output, outputs[i])
}
return outputs
}
func (state SubexSumState) nextParent(child SubexState, acc interface{}) SubexState {
sum := acc.(walk.ValueNumber)
return &SubexSumState {
inputState: child,
next: state.next,
sum: sum,
}
}
func (state SubexSumState) eat(store Store, char walk.Atom) (nextStates []SubexBranch) {
return feedChild(state, store, char)
}
func (state SubexSumState) accepting(store Store) (outputs [][]walk.Atom) {
return acceptChild(state, store)
}
|